Learning better image representations using 'flobject analysis'

نویسندگان

  • Patrick S. Li
  • Inmar E. Givoni
  • Brendan J. Frey
چکیده

Unsupervised learning can be used to extract image representations that are useful for various and diverse vision tasks. After noticing that most biological vision systems for interpreting static images are trained using disparity information, we developed an analogous framework for unsupervised learning. The output of our method is a model that can generate a vector representation or descriptor from any static image. However, the model is trained using pairs of consecutive video frames, which are used to find representations that are consistent with optical flow-derived objects, or ‘flobjects’. To demonstrate the flobject analysis framework, we extend the latent Dirichlet allocation bagof-words model to account for real-valued word-specific flow vectors and image-specific probabilistic associations between flow clusters and topics. We show that the static image representations extracted using our method can be used to achieve higher classification rates and better generalization than standard topic models, spatial pyramid matching and gist descriptors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Better Image Representations Using ‘Flobject Analysis’: Supplementary Material

There are four major stages in the flobject pipeline: preprocessing, flobject analysis, creating image descriptors, and classification. Before any analysis is done, video frame pairs and static images are first preprocessed and reduced to a suitable representation during the preprocessing stage. Next the unsupervised flobject analysis stage takes as input a collection of video frame pairs and t...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Similarity measurement for describe user images in social media

Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...

متن کامل

Invariant representations of images for better learning

We study the problem of obtaining representations of images which are invariant to transformation of the image under rotations, towards improving supervised learning. We show that using simple ideas from group representation theory we get invariant representations of images. Off the shelf learning algorithms perform much better on such representations. We develop on ideas by Cohen and Welling [...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011